
CodeArts TestPlan

Best Practices

Issue 02

Date 2024-10-18

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. i

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 E-Commerce Platform Test Driven by API Automation Test Cases and Keywords
...1

2 Designing a Test Based on Requirements..9

3 DevOps Agile Test... 19

4 Tailoring a Test Plan... 23

5 Typical Test Design Techniques..26

6 Testing Pyramid and Continuous Automated Testing..30

7 Defect Handling Process and Precautions...35

8 Writing a Test Report... 41

CodeArts TestPlan
Best Practices Contents

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. iii

1 E-Commerce Platform Test Driven by API
Automation Test Cases and Keywords

Application Scenarios
With increasingly complex functions of cloud platforms, the same pre-steps or test
logic is often used during test case design. If these steps are written in each test
case, the workload is heavy and the maintenance is difficult. Through the auto API
test function of CodeArts TestPlan, you can create test projects, compile test cases,
and run automatic execution of test case scripts. URL test steps can be set as API
keywords. The keyword library manages API keywords, combined keywords, and
system keywords, and makes them easy-to-use, understandable, maintainable,
and reusable in different test scenarios, such as component test and system test.

This section demonstrates the test steps of product management function of an e-
commerce platform.

Adding URL Test Steps and Setting a Keyword
To query product information of an e-commerce platform, perform the following
steps.

Step 1 Log in to the CodeArts TestPlan homepage, search for your target project, and
click the project name to access the project.

Step 2 In the navigation pane, choose Testing > Testing Case.

Step 3 Click the Auto API Test tab and click Create on the right.

Step 4 Enter the case name, configure other information as required, and click Save and
Write Script. The Scripting page is displayed.

CodeArts TestPlan
Best Practices

1 E-Commerce Platform Test Driven by API
Automation Test Cases and Keywords

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 1

Step 5 Create a user login API. (Before managing product information, you need to log in
to the e-shop homepage.) On the Scripting page, select the Pre-steps tab and
click URL Request to generate a test step.

Select POST as the request method, enter the request URL of the tested service,
and set request parameters (username and password).

Click the Checkpoints tab and set the checkpoints based on the response code.

Click the Extract Response tab and set the response extraction parameters to
extract parameters for subsequent test steps.

CodeArts TestPlan
Best Practices

1 E-Commerce Platform Test Driven by API
Automation Test Cases and Keywords

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 2

Step 6 Create an API for adding new products. On the Scripting page, select the Test
Procedure tab and click URL Request to generate a test step.

Set the request method to POST, enter the request URL of the service to be tested,
set the request parameters (inventory, description, icon, ID, category, name, price,
and title) and request header parameters (using the response parameters
extracted in the pre-steps).

Step 7 Create an API for querying specified product information. On the Scripting page,
select the Test Procedure tab and click URL Request to generate a test step.

Set the request method to GET, enter the request URL of the tested service, and
set the request parameters (the product ID).

CodeArts TestPlan
Best Practices

1 E-Commerce Platform Test Driven by API
Automation Test Cases and Keywords

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 3

Step 8 Create an API for updating products. On the Scripting page, select the Test
Procedure tab and click URL Request to generate a test step.

Select the request method to PUT, enter the request URL of the tested service, and
set the request parameters (for updating the product information).

Step 9 Create an API for deleting products. On the Scripting page, select the Test
Procedure tab and click URL Request to generate a test step.

Select the request method to DEL, enter the request URL of the tested service, and
set the request parameters (ID of the product to be deleted).

Step 10 Create an API for querying the product list. On the Scripting page, select the Test
Procedure tab and click URL Request to generate a test step.

CodeArts TestPlan
Best Practices

1 E-Commerce Platform Test Driven by API
Automation Test Cases and Keywords

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 4

Set the request method to GET and enter the request URL of the tested service.

Step 11 You can add, delete, modify, and query system keywords based on the database
type. Database operations are stored as system keywords in the keyword library so
that the operations can be reused in multiple service scenarios. For details, see
system keywords of API automation test cases.

Step 12 After the script is edited, click Save and execute the test case. After the execution
is complete, view the execution result on the Results tab page.

Step 13 Set test steps that may be reused in future script editing as API keywords.

Click the icon on the right of the URL request name. On the page that is
displayed, set API Keyword and Description, and select the directory where the
keyword is to be stored.

CodeArts TestPlan
Best Practices

1 E-Commerce Platform Test Driven by API
Automation Test Cases and Keywords

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/usermanual-testman/cloudtest_01_0034.html

----End

Setting Combined Keywords for a Full Process
When designing test cases, you may often use the same pre-steps or test logic. If
these steps are written in each test case, the workload is heavy and the
maintenance is difficult. Combined keywords encapsulate multiple test steps as
common test logic. This test logic can be reused when the combined keywords are
invoked by other test cases. The process of adding, deleting, modifying, and
querying products can be set as a basic combined keyword for reuse on the e-
commerce platform.
● Scenario 1

Step 1 Click in the upper right corner of the Scripting page.

Step 2 Set Name and Description, select the directory where the keywords are to be
stored, and set request parameters as required. Select the added URL Request and
click Save.

Step 3 Choose Keyword Library > Combine, and view the stored combined keywords.

CodeArts TestPlan
Best Practices

1 E-Commerce Platform Test Driven by API
Automation Test Cases and Keywords

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 6

----End

● Scenario 2

Step 1 Store the preceding test steps to the API of the keyword library by referring to the
steps of setting API keywords.

Step 2 On the Keyword Library > Combine tab page, click next to the folder where
the keywords are to be saved. Set Name and Description.

CodeArts TestPlan
Best Practices

1 E-Commerce Platform Test Driven by API
Automation Test Cases and Keywords

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 7

Step 3 Click the API tab, select the folder where the keyword to be added is located, and

click on the right of the keyword to be added or hover the cursor over the
keyword area and drag the keyword to the test step area.

Step 4 Click Save.

----End

CodeArts TestPlan
Best Practices

1 E-Commerce Platform Test Driven by API
Automation Test Cases and Keywords

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 8

2 Designing a Test Based on Requirements

Overview
The test design feature in the CodeArts TestPlan provides multi-dimensional test
strategies and design templates. Based on different design inputs, there are two
processes to generate the test scheme and test cases: requirement > scenario >
test point > test case, and feature > scenario > test point > test case. The feature
utilizes mind maps and heuristic testing to encourage testers to visually represent
their test models. It also improves test design efficiency, optimizes test
completeness, and helps testers reduce product test omissions during execution.

This function enables you to combine factors using multiple modes and
algorithms, and generate test cases in batches from the resulting combinations. In
addition, you can reference action and data factors to efficiently generate test
cases in batches, freeing yourself from repeated writing of test cases of a test
point. The test cases generated in this way are clear and unified in structure.

This section describes how to generate a single test case based on the
requirement, and how to generate test cases in batches by using test factors.

Prerequisite
1. You have created a project. This section uses a Scrum project as an example.
2. You have created a requirement work item.

Generating a Test Case Based on Requirements

Step 1 Log in to the CodeArts homepage, search for your target project, and click the
project name to access the project.

Step 2 In the navigation pane, choose Testing > Testing Design.

Step 3 Click Requirements on the left, select a requirement, and click Create in the
upper left corner.

CodeArts TestPlan
Best Practices 2 Designing a Test Based on Requirements

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_06_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-projectman/devcloud_hlp_00023.html

Step 4 The mind map page is displayed. Right-click the root node, and choose Add
Subnode(Ins) from the shortcut menu. Change the subnode name to Mobile
Testing.

Step 5 On the toolbar above the mind map, click to tag the node as a scenario.
If is displayed next to the selected node, the scenario is added successfully.

Step 6 Right-click the Mobile Testing scenario node, add a subnode, and change the
subnode name to Test the camera function of the mobile phone. On the toolbar
above the mind map, click to tag the node as a test point. If is
displayed next to the selected node, the test point is added successfully.

CodeArts TestPlan
Best Practices 2 Designing a Test Based on Requirements

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 10

Step 7 Add a prerequisite subnode and a test step subnode to the Test the camera
function of the mobile phone node, and then add an expected result subnode to
the test step. Example:
● Prerequisite: The mobile phone provides a personalized photographing

mode
● Step: Set the resolution to 800,000 pixels, and the mode to auto flash,

auto ISO exposure, and motion
● Expected result: Successful

Step 8 Right-click the Test the camera function of the mobile phone. node and choose
Generate Case from the shortcut menu to create a draft case. If is displayed on
the node, the operation is successful. In this case, a draft case is generated. Click

. The case details are displayed on the right of the page.

Step 9 Right-click the node for which a case has been generated and choose Archive
Case from the shortcut menu. The Archive Case window is displayed.

Step 10 On the left, select the test cases to be archived. On the right of the page, set
Version, Case Library/Test Plan where the test case is to be stored, and
Execution Mode, select a feature, and click Confirm. (The requirement selected
during mind map creation is associated to this test case by default if you have
subscribed to CodeArts Req.) If is displayed in the node, the operation is
successful. You can find the test case on the Testing Case page. Click . The test
case details page is displayed.

CodeArts TestPlan
Best Practices 2 Designing a Test Based on Requirements

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 11

----End

Generating Combinatorial Cases in Test Factor Center
To use the Test Factor Center function, create a factor library first. A project can
have only one factor library. Go to the Testing Design page, and click Test Factor
Center to access the factor library. You can create a test factor library either by
creating new factors or importing existing ones.

Creating new factors

Step 1 Click the root directory in the factor library tree (create one if there is no library

available), click , choose Create Directory, and enter a library name.

Step 2 Click the directory and click Create Factor.

Step 3 Enter a factor name, set Factor Type to Data Factor, click Add, set valid values
and invalid values for the factor, and click Confirm.

Configur
ation
Item

Mandat
ory

Description

Factor
Name

Yes Name of a data factor (1–500 characters).

Factor
Type

Yes Default type: Data Factor.

CodeArts TestPlan
Best Practices 2 Designing a Test Based on Requirements

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 12

Configur
ation
Item

Mandat
ory

Description

Factor
Descripti
on

No Brief description of a data factor. Max. 500 characters.

Data
Type

Yes Default type: String.

Valid
Value

No Elements of a data factor. Click Add to add more valid
values.

Invalid
Value

No Elements not supported by a data factor. Click Add to add
more invalid values.

Remarks No Max. 500 characters.

For example, to test the camera function of a mobile phone, create data factors
Pixels, Flash mode, ISO, and Scene mode, as shown in the following figures.

CodeArts TestPlan
Best Practices 2 Designing a Test Based on Requirements

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 13

CodeArts TestPlan
Best Practices 2 Designing a Test Based on Requirements

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 14

Step 4 To create an action factor, configure the following information and click Confirm.

Configur
ation
Item

Mandat
ory

Description

Factor
Name

Yes Name of an action factor (1–500 characters).

Factor
Type

Yes Select Action Factor.

Factor
Descripti
on

No Brief description of a data factor. Max. 500 characters.

Prerequis
ite

Yes Enter the prerequisites of an action factor. Max. 2,000
characters.

Test
Steps

Yes Enter the step description and expected result. In the Step
Description column, use ${Data Factor} to invoke data
factors. Click + in the Operation column to add a test
step.

Remarks No Max. 500 characters.

For example, to test the camera function of a mobile phone, the action factor
Take a photo may be set as shown in the figure below.

CodeArts TestPlan
Best Practices 2 Designing a Test Based on Requirements

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 15

----End

Importing existing factors

Step 1 Go to the test factor center, select a directory, and click Import.

Step 2 Click Download Template, edit the downloaded file on the local PC, and upload
the file.

After the file is imported, directories and factor data configured in it are displayed
in the factor library.

----End

CodeArts TestPlan
Best Practices 2 Designing a Test Based on Requirements

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 16

Generating cases in batches using test factors

Step 1 In the requirement tree, click a requirement, and click a mind map.

Step 2 Right-click a test point to be associated with the factor library, and choose
Associate Factor Library from the shortcut menu.

Step 3 Select the target factor library directory, select useful factors, and click Confirm.

Step 4 Right-click the test point and choose Generate Combinatorial Case from the
shortcut menu.

Step 5 Click Data Factor and select a combinatorial algorithm.

Step 6 Click Preview Combination to see the combinations. The following figure shows
the combinations generated using the PairWise algorithm.

Step 7 Select combinations and click Next.

CodeArts TestPlan
Best Practices 2 Designing a Test Based on Requirements

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 17

Step 8 The Configure Test Case page is displayed. Check the prerequisites, steps, and
expected results of the action factor. Edit the information as required. Click
Confirm to generate combinatorial cases.

Step 9 Click the case icon in the test point.

Step 10 Select cases and click Archive Cases.

Step 11 On the left, select the test cases to be archived. On the right of the page, set
Version, Case Library/Test Plan where the test case is to be stored, and
Execution Mode, select a feature, and click Confirm. (The requirement selected
during mind map creation is associated to this test case by default if you have
subscribed to CodeArts Req.)

Step 12 Click in the upper left corner of the page. Choose Testing > Testing Case to
check the archived cases in the case list.

----End

CodeArts TestPlan
Best Practices 2 Designing a Test Based on Requirements

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 18

3 DevOps Agile Test

This document describes how to build test capabilities tailored to specific product
development stages and characteristics to address the challenges of agile and
DevOps transformation.

Agile and DevOps

Agile and DevOps transformation is driven by business goals and customer needs.
As market competition becomes increasingly fierce, the time window for
innovation and monetization of new business models becomes shorter and
shorter. As a result, more enterprises adopt the lean entrepreneurship mode. After
capturing market requirements, enterprises have to shorten the time to market
(TTM) of products and launch minimum viable products (MVPs) that satisfy
customer requirements as quickly as possible.

Take Huawei as an example. Before 2008, Huawei still adopted the traditional
delivery method for its projects. For example, after a project is initiated at the
beginning of the year, all customer requirements, including user feedback, will be
collected and ranked throughout the year. In the middle of the year, the product
will be released to the customer. A patch will be released two months later, and a
formal version will be released at the end of the year. Traditional projects have a
low speed of version delivery but high quality requirements. If the customer finds
a problem in the patch, the customer can only wait for another two months. If the
customer does not accept the product in this period, project efforts are wasted.
Therefore, the product quality must be strictly controlled.

Today, with products gradually developing towards agility, some R&D tool
platforms have been migrated to the cloud, so test tools need to be transformed
correspondingly. In the past, product delivery was conducted every half a year or
every two months. After transformation, delivery was conducted every one month
or even every two weeks. However, the transformation was not thorough, and
there were still some problems with customers' delivery processes. Transformation
to platform-based and service-oriented tools has changed business models
fundamentally. After requirements are migrated to the cloud, customers can
quickly get involved. Functions can be developed efficiently on cloud platforms.
Products are frequently iterated according to customer requirements. This delivery
mode shortens the delivery period from half a year to a couple of weeks, or even
to a day or two. From the perspective of requirements, great changes have taken
place. Basically, we have achieved step-by-step advancing and fast trial and error.

CodeArts TestPlan
Best Practices 3 DevOps Agile Test

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 19

Test Debt

From waterfall to agile development and then to DevOps, the productivity of
development, testing, and delivery is increasing, leaving some issues unresolved,
which affects the ongoing improvement of test capabilities and value.

● Some companies attach more importance to development than testing, and
limit the career of testers. In addition, manual testers are not familiar with
programming, and developers do not pay enough attention to testing. Test
teams often have heavy workloads, but are always understaffed.

● Testers sometimes do not fully understand customer requirements. Besides,
the department silo between testing and development leads to information
transparency issues, as well as insufficient communication and collaboration.
Moreover, some companies overcompromise on quality for higher efficiency,
and ignore the cultivation of agile culture and values.

● Some products are highly coupled and have poor testability. Testers rely too
much on black box testing, and use inappropriate test policy and methods.
The test environment deployment takes a long time and is frequently
updated.

Focus of Testing: Quality of Service Value

Testing is a quality activity, which means its top priority is quality. Testing is also
an engineering activity to obtain the maximum value with limited time,
manpower, and resources. Although quality has multiple dimensions, it should
have a focus: quality of service value, that is, quality of product value presented to
customers. Testers should focus on the service value and determine the weights
and priorities of quality in multiple dimensions, such as function, security,
performance, usability, and compatibility. Testers should not test every aspect and
related points for every testing project.

For example, for online payment functions, the focus of testing should be security;
for online shopping functions, the focus should be usability; for large-scale flash
sales and promotion activities, the focus should be performance. Therefore, testing
must aim at the service value of products, determine product objectives, formulate
key quality points and related test policy, and implement the policy in practice.
Then, testers need to provide feedback on poor functions and test the improved
functions again to check whether the overall quality meets the expected results.

Conventional Security and Elastic Security

Conventionally, we would try to find out and remove all insecure factors, which is
an ideal way of testing. In actual work, however, it is impossible to identify all
insecure factors in the entire system, which involves various aspects such as
capabilities and architectures.

Therefore, elastic security is developed based on this. That is, the insecure factors
are displayed as much as possible through scenario simulation. Based on this
insecure scenario, a quick repair solution is provided to compensate for the
insecure factors, which is not perceived by users. From the perspective of a
product, both its commercial and quality goals can be achieved. This is called
elastic security. Even if an error occurs, vulnerabilities can be quickly fixed or self-
repaired in time to achieve the normal working purpose.

CodeArts TestPlan
Best Practices 3 DevOps Agile Test

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 20

Shift-Left Testing and Shift-Right Testing
Shift-left testing is to push test actions toward the early stages of a project. For
example, during behavior-driven development (BDD), test cases are designed
based on scenario requirements to match the design. During consumer-driven
contract (CDC) testing, services are coupled with each other. CDC can be used to
decouple services from each other to prevent problems.

Shift-right testing is to push test actions toward the later stages of a project.
Generally, tests are performed only before the software package release. Shift-
right testing requires continuously testing from version release to production and
online operation.

There are also some practices in these two aspects. For example, online dialing
tests are performed to proactively monitor user behavior, quickly capture problems
from the behavior track, and proactively push the problems to related owners for
them to pay attention to and solve the problems. Therefore, the online process
can be fed back to developers through some test methods to let them know the
overall performance of the current product. Then the developers can quickly
respond to the product.

Test Strategies in Different Stages of Product Development
Is it necessary to build the all automated testing capabilities as soon as a team is
built? The following describes how to build automated testing capabilities from
the perspective of the software maturity period.

In the initial stage of software exploration, the product is in an uncertain state.
The front-end style and overall layout, as well as the back-end APIs, change
frequently. Because the life cycle of automated testing cases is short, it is not cost-
effective to create some automated testing cases. In this period, the product
features can be controlled and only a few tests are performed. Therefore, manual
tests can be performed instead of automated testing. In this way, the product can
quickly identify errors and users can use the product.

In the product expansion stage when users recognize the product, the number of
users and requirements will increase. In this case, automation must be considered
because the full verification cost of each iteration in this stage increases and the
delivery speed also increases. It is impossible to perform all manual tests during
each round of go-live. In this case, automated testing cases are required for old
modules.

At the product extraction stage, product requirements and benefits have reached
the saturation stage. In this case, product requirements must be strictly controlled,
and the responsibilities of automated testing cases must be guarded. No change is
allowed to introduce extra risks or major feature changes, which may cause
attacks on mature users.

Impact of Team Scale on Test Construction
If the team has fewer than five members and the team is in the exploration stage,
the quality activities can be limited to the self-organization stage of the test. In
this case, only some basic test management activities are performed, defects are
managed, and regression tests are performed. In this stage, a test management
process and a mechanism are established, and automated testing are not involved.

CodeArts TestPlan
Best Practices 3 DevOps Agile Test

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 21

With the further expansion of the project, the number of team members gradually
increases to 5 to 10. At this time, the test workload suddenly increases, and
dedicated testers may be involved. The testers will talk with developers, convert
the requirements into automated testing cases, establish continuous integration,
and gradually evolve some test methods. At this stage, some automation attempts
have been made.

As the team size increases, if one person cannot handle the workload, more
testers will be recruited and a dedicated test team will be set up. This team will
shift from automated testing to test automation and involve more management
work. During the management process, the team will interconnect some products,
including developing dedicated tools to implement the overall automation
capability, not only automation execution.

After the preceding evolution cycles, the test team has a lot of test automation
experience. In this case, the cloud-oriented transformation can be performed.
Currently, many teams are performing DevOps transformation. The most
concerned aspect is to set up a DevOps full-function team. What are these people
doing before transformation? What is the original test team with 10 to 15
members? In this stage, the team needs to transform special test capabilities into
service-oriented capabilities. Test specialists will provide training at the early team
stage, including test engineering construction, early test case formulation,
standard template development, and special capability training for non-functional
tests. All teams review the test process, including the test policy, test plans, and
test cases. Then, they check the improvements in the process of the entire team.
Last but not least, the special test teams are transformed from all aspects to
servitization to achieve automation transformation.

Automated Testing and Test Automation
This part introduces the concept of test automation.

Test automation aims to reduce manual tests and operations. Test automation
includes not only automated testing, but also all other activities that can reduce
manpower input, such as automated test environment creation, deployment of
tested systems, monitoring, and data analysis. In many cases, automated testing is
only the execution part of the test. For example, some manual test methods
during test execution are changed to automated testing. However, test
automation is not only an execution part, but also includes obtaining and
generating test data from the environment, executing automated testing, and
generating results. If there is any problem, it will be automatically pushed to
related personnel and the corresponding organization will solve the problem. Test
reports are automatically generated so that testers can directly obtain the test
results.

CodeArts TestPlan
Best Practices 3 DevOps Agile Test

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 22

4 Tailoring a Test Plan

This chapter describes how to determine test objectives and scope, formulate test
policy and plans, set up test teams, and prepare test tools and environments.

At the beginning, the team needs to formulate a test plan to guide the test
activities of the testers in the entire test period. A test plan describes the
objectives, objects, scope, policy, activities, methods, resources, and progress of the
test. It also determines the test items, features, tasks, executors, and possible risks.
It can effectively prevent the risks and ensure the smooth implementation of the
plan.

Significance of Making a Test Plan
● Ensures that test activities are carried out based on test objectives and serve

specific test objectives.
● Determines the test features, requirement list, and test scope of the test

object.
● Selects test policy and methods suitable for the team's technical capabilities

and tool portfolio.
● Identifies possible risk factors during test activities as early as possible so that

you can resolve them in time.
● Properly estimates the test workload, personnel, and resource requirements,

and prepares the plan for each test item.
● Helps testers break down test activities and tasks and orchestrate personal

work plans.
● Guides test execution activities, and corrects and remedies execution

deviations in time.
● Provides related documents to report and communicate with stakeholders.

Time for Making a Test Plan

Test activities include test plan development, test design, and test execution. Test
plan development ranks first and is carried out in the early stages of the test
period. The test plan may be carried out at multiple time points based on the
development mode and team organization mode used by different projects. For
example:

CodeArts TestPlan
Best Practices 4 Tailoring a Test Plan

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 23

● A system test plan can be made after the test department receives the test
demand for a customer-oriented mobile app before its first version is released.

● In an internal software project, a test plan can be made before the product
enters the development stage when the product initiation requirements are
confirmed, the architect has designed the product architecture solution and
design solution, and the developers begin to make a development plan.

● For commercial products that require routine special security tests, a test plan
can be made after the security test department evaluates feature changes of
new products based on historical security test plans and test reports.

● Different types of test plans can be made by experts of function tests,
performance tests, security tests, and more after the test team leader makes
the overall test plan.

It is recommended that the test plan be started as early as possible to guide and
standardize the product quality activities in the early stages and improve the
product testability. The testers should guide the quality elements in the product
architecture and design from the perspective of attackers, which complies with the
idea of shift-left testing.

However, in the early stages of the product, the granularity of the test plan is
coarser. There is a lack of test cases at the executable level and available test
environments. Therefore, the test plan needs to be refined as the project
progresses. The test plan is not constant. As the test project is carried out, the test
plan is gradually detailed and contains more and more information. During the
refinement and improvement of the test plan, the initial test objectives, scope,
design, and policy should be reviewed.

Test Plan Makers
● Owners of test projects and test teams
● Owners of security, performance, and reliability tests
● Experienced test engineers and test architects

Test Plan Content
According to ISO and IEEE standards related to test documents, the content to be
included in a test plan can vary from project to project. The content depends on
the project and team scale. The test plans can be simplified for small teams.

● Objectives
Describe why a test is performed and what test objectives need to be
achieved. The test objectives are the beginning of a test plan. The test needs
to focus on the service value of the product. An overall product test plan
should integrate the function, security, performance, usability, compatibility,
and scalability into the test objectives based on the service attributes of the
product. For example, financial products have high requirements on security.

● Test scope
Describe the name, version, features, requirements, environments, and test
items of the tested system (test objects).

● Test policy
Specify the test types, scenarios, and methods, and strategically describe how
to perform the test.

CodeArts TestPlan
Best Practices 4 Tailoring a Test Plan

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 24

● Test solution
Describe the test solution, such as the integration procedure and sequence,
test procedure and sequence, test methods, test tools, and test case design
and execution methods.

● Test environments
Describe the names, specifications, quantities, versions, and accounts of the
hardware, software, and test tools required for the test, as well as the
management policy for preparing, reserving, restoring, and releasing the test
environments.

● Testers
Describe the number of testers, work division, and responsibilities, such as test
architects, test development engineers, performance test engineers, and test
environment management personnel.

● Test schedule
Describe the planned start time and end time of a test, overall test schedule,
and key phased progress check points. The test schedule should be combined
with the development plan. The constraints and dependencies between tasks
and resources such as the test solution, environments, and personnel must be
considered.

● Test entry conditions
Specify the entry conditions for starting a test. For example, the functions
specified in the product specifications have been implemented, and the basic
process and entry test cases have been passed. This prevents the test plan
from being affected by the lack of basic test conditions.

● Test release standards and deliverables
Specify the conditions to be met for completing a test, the criteria for passing
or failing the test, and the deliverables to be generated after the test, for
example, a test report whose content is specified.

● Risks
Analyze the potential risks in the current project operation and the measures
to mitigate and resolve the risks. Examples of risks: human resource
availability risks, personnel skill and domain knowledge risks, and
development-to-test time risks.

Test Plan Review
After a test plan is created, key stakeholders, such as the project manager, test
manager, product manager, architect, and O&M manager, should be invited to
review the correctness, comprehensiveness, and feasibility of the test plan.

CodeArts TestPlan
Best Practices 4 Tailoring a Test Plan

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 25

5 Typical Test Design Techniques

Test design plays an important role in test activities. Test objects, scenarios, types,
and environments are analyzed based on the test plan. Proper test techniques are
selected based on the test policy to design test cases. Test design techniques
include scenario analysis, equivalence partitioning, boundary value analysis, cause
and effect graphing, decision table testing, orthogonal array testing, and more.
Flexible use of test design techniques can help reduce redundant test cases,
improve test coverage, maintainability, and reuse of test cases, reduce invalid test
execution workload, and improve test effects.

Equivalence Partitioning

Equivalence partitioning is a testing technique that divides the input data of a
system into equivalence classes of equivalent data. In each equivalence class,
selecting all input data for testing is equivalent to selecting only one piece of
input data for testing. If one piece of input data fails to detect any system error,
all other input data in the equivalence class cannot detect any system error.
Equivalence partitioning is used to select one piece of data from each equivalence
class as the test input to improve the coverage of test scenarios and reduce invalid
test workload.

CodeArts TestPlan
Best Practices 5 Typical Test Design Techniques

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 26

Equivalence partitioning includes valid equivalence classes and invalid equivalence
classes. A valid equivalence class summarizes a set of reasonable and meaningful
input data, that is, a regular path test input. It can be used to check whether the
program implements the functions and performance specified in the specification.
In contrast, an invalid equivalence class is a set of unreasonable or meaningless
input data.

● Example 1: If the input condition is a Boolean value, a valid equivalence class
and an invalid equivalence class can be obtained.

Input condition: whether to back up data.

Valid equivalence class: yes (TRUE).

Invalid equivalence class: no (FALSE).

● Example 2: If the input condition specifies the range of the input value, a valid
equivalence class and an invalid equivalence class can be obtained.

Input condition: a number greater than 1 and less than 3.

Valid equivalence class: 2.

Invalid equivalence class: 0 and 4.

● Example 3: If the rules that the input data must comply with are specified, a
valid equivalence class that complies with all rules and several invalid
equivalence classes that violate the rules from different perspectives can be
obtained.

Input condition: a positive integer.

Valid equivalence class: 1.

Invalid equivalence class: 0, –10, 10.1...

The equivalence partitioning technique focuses on the proper division of input
values. When designing test cases, consider both types of equivalence classes.
Ensure that not only reasonable data can be received, but also input in unexpected
scenarios can be processed. When the equivalence partitioning technique is used
for test design, list the possible inputs of the features to be analyzed, and divide
and classify the equivalence classes. Each equivalence class after analysis is
regarded as a test case. Tools such as tables or mind maps can be used to assist in
equivalence partitioning. Equivalence partitioning is often used in conjunction with
other techniques, such as boundary value analysis.

● For example, if the input data is months, which are integers ranging from 1 to
12, then 12 valid equivalence classes and one invalid equivalence class can be
obtained, as shown in the following table.

Input
Condition

Valid
Equivalence
Class

No. Invalid
Equivalence
Class

No.

Month 1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12

0001 13 1001

The following test cases can be created based on the equivalence classes.

CodeArts TestPlan
Best Practices 5 Typical Test Design Techniques

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 27

No. Test Case Equivalence Class No.

0001 Input of a correct
month

0001

0002 Input of an incorrect
month

1001

Boundary Value Analysis
According to experience, a large number of errors occur on the boundary of the
input or output range. Boundary value analysis is to select test data at and near
the boundary of the divided equivalence class area and to design test cases. The
following methods and principles can be followed:

● When the input condition specifies the value range
Select the boundary values and the values that are just beyond the
boundaries as the test input. For example, if the input value is an integer
ranging from 0 to 100, design test cases for values 0 and 100, and also for –1,
1, 99, and 101.

● When the input condition specifies the number of values
Select the maximum number, minimum number, minimum number – 1, and
maximum number + 1 as the test input. For example, if the number of
attachments to be uploaded ranges from 1 to 10, design test cases for values
1, 10, 0, and 11.

● When the input and output are ordered sets
Select the first and last elements of the set as the test input. For example, if
the input is an ordered array and the array value ranges from 1 to 7,
indicating Monday to Sunday, select 1 and 7 as the test input.

● If a group of values (n) of the input data are specified and the program needs
to process each input value separately, n valid equivalence classes and one
invalid equivalence class can be established.

● Analyze the specifications and find out other possible boundary conditions.

CodeArts TestPlan
Best Practices 5 Typical Test Design Techniques

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 28

After the preceding steps are performed, a large number of test items may be
generated, which may be repeated and can be combined. Boundary value analysis
is often used together with equivalence partitioning. Generally, boundary values
are selected in equivalence classes.

CodeArts TestPlan
Best Practices 5 Typical Test Design Techniques

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 29

6 Testing Pyramid and Continuous
Automated Testing

In agile and DevOps development modes, products must be able to be released at
any time. This document describes how to use the testing pyramid and continuous
integration and continuous delivery (CI/CD) automated testing to implement
efficient test feedback and ensure the quality of products released at any time.

Testing Pyramid
The test automation pyramid was first proposed by Mike Cohn in 2009 in his book
Succeeding with Agile: Software Development Using Scrum. It was first proposed
as a three-layer pyramid, which consists of the GUI tests, service tests, and unit
tests from top to bottom. With the development of agile tests, there are some
variants of the test automation pyramid. In practice, the service tests can also be
regarded as API tests.

The triangle structure indicates that the recommended investment proportion for
automation at each layer increases from top to bottom.

CodeArts TestPlan
Best Practices

6 Testing Pyramid and Continuous Automated
Testing

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 30

Martin Fowler has a comment on the testing pyramid, "Most importantly such
tests are very brittle. An enhancement to the system can easily end up breaking
lots of such tests, which then have to be re-recorded. You can reduce this problem
by abandoning record-playback tools, but that makes the tests harder to write.
Even with good practices on writing them, end-to-end tests are more prone to
non-determinism problems, which can undermine trust in them. In short, tests
that run end-to-end through the UI are: brittle, expensive to write, and time
consuming to run. So the pyramid argues that you should do much more
automated testing through unit tests than you should through traditional GUI
based testing."

The test technologies involved in each layer of the testing pyramid have their
own advantages and limitations. The upper-layer GUI tests are brittle
(instability), time-consuming (execution efficiency), and the distance
between the problem symptom location (UI) and the root cause location
(code) is too long. The testing pyramid focuses on the test quality instead of
quantity. It is recommended that the bottom-layer test investment be
increased.

● A higher layer leads to lower running efficiency, which slows down the build-
feedback cycle of continuous integration.

● A higher layer leads to higher development complexity, which slows down
delivery progress when the team capabilities are limited.

● End-to-end testing is more likely to bring uncertainty in test results.

CodeArts TestPlan
Best Practices

6 Testing Pyramid and Continuous Automated
Testing

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 31

● A lower layer leads to stronger unit isolation, which makes it easier to locate
and analyze problems.

In principle, the unit test needs to be undertaken by the developers. In many
teams, the developers are insufficient, so they have to focus on function
implementation first. In addition, due to a lack of investment and experience in
the unit test, many teams do not perform the unit test or just do it reactively.
Some have proposed the anti-patterns of the pyramid structure—the Ice-Cream
Cone and the Cupcake.

The Ice-Cream Cone pattern, proposed by Alister Scott in 2012, inverts the ratio of
GUI tests and unit tests in the testing pyramid to form an inverted pyramid. In
addition, a large number of manual tests are added above GUI tests. Although
anti-patterns are not recommended, they are indeed used frequently. At the early
stages, most teams did not perform automated testing and completely relied on
manual tests. Later, the teams started from function test automation and
generated some GUI automated testing cases. This way of building automated
testing from outside to inside leads to such an anti-pattern. This pattern has some
problems in terms of test efficiency and test case maintainability. However, it is an
inevitable path for many teams to build test automation capabilities. When
problems are accumulated to a certain level, this pattern needs to gradually evolve
to the testing pyramid.

CodeArts TestPlan
Best Practices

6 Testing Pyramid and Continuous Automated
Testing

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 32

Continuous Automated Testing
Continuous automated testing is to run automated testing during CI/CD and
quickly report failures. It is first derived from the idea that developers obtain quick
feedback through unit tests in the development environment. Continuous
automated testing gradually matures with the development of CI/CD. Today,
developers are required to update product and fix online problems more and more
quickly. If manual tests are still used frequently or development and testing are
completely separated, it is difficult to ensure that the test quality assurance
activities are completed in a short time window. Therefore, automated testing
needs to be embedded in the CI/CD process to ensure the quality of deliverables.

Continuous testing means that test activities are incorporated into the continuous
integration, feedback, and improvement cycle. Continuous testing runs through
the entire software delivery cycle. Continuous testing advocates early, frequent,
and automated testing.

"Continuous" is reflected in the whole process of evolving deliverables from small
granularity to finished software in the agile and DevOps processes, from white-
box code tests to component module tests, API tests, E2E function tests, and even
online tests in the production environment after delivery. Each stage maps the
layers of the testing pyramid from bottom to top. The lower-layer tests are
performed in the early stages, and the upper-layer tests are performed in the later
stages. This is similar to each stage of the automobile manufacturing pipeline.
After the assembly in each stage is complete, necessary checks are performed
before the next stage starts. During software DevOps development, the pipeline
carries the assembly, check, and test processes.

CodeArts TestPlan
Best Practices

6 Testing Pyramid and Continuous Automated
Testing

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 33

● Shift-left testing and shift-right testing
During continuous testing, test activities can go beyond the time, role, and
department restrictions of traditional tests, and are developed into coherent
and continuous quality assurance activities.
Shift-left testing emphasizes that the test activities are carried out as early as
possible. The testers participate in the activities in the early stages of a
software project. The related test cases are defined before the function
development to detect quality problems in advance. The developers
participate in the tests.
Shift-right testing emphasizes that test monitoring is performed in the
production environment, and that user feedback is obtained in real time to
continuously improve user satisfaction and product quality.

● Test automation
To achieve fast flow and quick feedback, continuous testing needs to be
automated to improve efficiency. Therefore, automated unit tests, API tests,
and E2E tests are embedded into the DevOps pipeline. Automated testing
improves test feedback efficiency and reduces errors caused by human factors.
Test automation not only automates the execution of test case scripts, but
also implements all other activities that can reduce manpower input, such as
automatic environment creation, deployment, monitoring, and data analysis.

CodeArts TestPlan
Best Practices

6 Testing Pyramid and Continuous Automated
Testing

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 34

7 Defect Handling Process and
Precautions

Product defect handling is not just about ticket submission by testers and defect
fixing by developers. It requires clear, comprehensive, and traceable defect tickets,
as well as a process that covers defect detection, reproduction, confirmation,
rectification, self-verification, regression tests, and closure.

Collaboration Between Development and Testers
During product testing, the testers record defect tickets, transfer them to the
developers for handling, and track the defect handling and closure. Defect tickets
are an important information carrier for development and testers to communicate
with each other. They may encounter the following problems:

● The developers complain that the defect description submitted by the testers
is not detailed. For example, the reproduction procedure and the software
version of the problem are not provided, which increases the communication
cost.

● The developers do not reproduce the problem mentioned in the defect ticket
in the local development environment and directly transfer the defect to the
testers.

● After a defect is rectified, the developers do not notify the testers. As a result,
the defect is not reviewed in time.

● After a defect is found during testing, the functions of related peripheral
functions are not tested. Therefore, potential problems are ignored. Besides,
the developers do not conduct related research.

● Developers disagree with the severity of defects marked by testers.

Defect Handling Process
The development and testers are the owners of the software product quality. They
have the same goal and willingness in terms of product quality assurance. The
only difference lies in the work activities they are engaged in. The development
and implementation of the defect handling process should aim to achieve mutual
trust and efficient collaboration, instead of being used as an excuse for inaction
and a trigger for contradictions. The following describes a complete defect
handling process, which can be used as a reference in operations.

CodeArts TestPlan
Best Practices 7 Defect Handling Process and Precautions

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 35

1. Detect defects.
In software development and testing, as code and modules are overlaid and
invoked layer by layer, an underlying defect may cause multiple problems.
Testers should not jump to conclusions about the problem that is found at
first and its causes. Instead, a logical and systematic analysis is required.
– First, exploratory analysis is required to check whether there are other

problems in addition to the first problem, and whether these problems
exist at the same time or have certain dependencies and sequence.
Therefore, more test procedures are required.

CodeArts TestPlan
Best Practices 7 Defect Handling Process and Precautions

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 36

For example, if an IT system cannot be logged in using a mobile number
and verification code, the testers need to analyze other login modes such
as using a mobile number and password; logging in to another system
using a mobile number and verification code; logging in to the system
using an app, a browser, or another device; using a mobile number of
another carrier.

– Second, infer the causes of the problem and verify the causes. Do not
regard test procedures as the causes. Instead, analyze the data changes
caused by the test procedures as the causes to check whether similar
problems may occur in other scenarios. If the problem occurs
occasionally, analyze the cause and contact developers to locate and
demarcate the problem.

– Finally, sort out the conditions, operation procedures, and symptoms of
the problem.

2. Reproduce the defects.
If the defects do not recur, it is difficult for developers to locate them.
Generally, the testers are responsible for ensuring that the defects can be
reproduced. If the defects occur occasionally and are difficult to be
reproduced, it indicates that the root causes of the defects are deep. In this
case, contact the developers for help. To reproduce the defects, the testers
must:
– First, the testers who have detected the defects should change the input

data or combination, and also change the test environment to reproduce
the defects according to defect occurrence conditions and operation
procedures.

– Second, other personnel (such as developers) should reproduce the
defects based on the text and screenshot descriptions.

3. Confirm the defects.
Before submitting defect tickets, the testers should confirm with the
developers, including whether the found problems are defects rather than
optimization points or new requirements, whether the problems are repeated,
whether the defects can be reproduced, whether the problem logs need to be
supplemented, whether the defect severity is correct, whether the defects
block testing, and when the defects will be resolved.
The time for development and testers to confirm defects is not limited. It is
advised to confirm information as soon as possible from the time when a
defect is found to the time when developers start to rectify the defect. The
defect tickets can also be submitted to the module owner for unified
confirmation and feedback.

4. Submit defect tickets.
The submitted defect tickets must be clear, comprehensive, manageable, and
traceable. A dedicated defect management system is required for defect
tickets. It is recommended that the defect management system be the same
as the requirement and development task management systems to facilitate
unified management and planning. Generally, a defect ticket contains the
severity, type, problem description, root cause analysis, handling suggestions,
test suggestions, associated test cases, environment information description,
logs required for fault locating by developers, and screenshots.

5. Fix the defects.

CodeArts TestPlan
Best Practices 7 Defect Handling Process and Precautions

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 37

After receiving defect tickets, the developers preliminarily analyze the
workload and arrange the schedule. In addition to fixing the problems
described in the defect ticket, the developers need to further test the
scenarios that may be associated, perform in-depth tests, find possible in-
depth problems, and solve the problems. After the defects are fixed, the
developers need to describe the root causes, occurrence conditions, and
solutions of the problems in the defect tickets. Some defect management
systems can also associate defect tickets with code submission records to help
track, collect, and trace defect tickets.

6. Perform self-verification.
After problem rectification, the testers need to create an individual build and
deploy it in the test environment in addition to verifying that the problems
are rectified in the local development environment. Ensure that the test
environment is the same as the environment used by the testers or the
environment where the problems are found to eliminate environment
differences. The self-verification is successful only after no problem is found in
the further test in the test environment. In DevOps tools, individual-level
pipelines can be used to automate the entire process of individual build
packaging and environment deployment, improving self-verification efficiency.

7. Submit a version.
After the code is fixed and reviewed, it should be released to the code branch
of the target version.

8. Verify the fix.
Testers deploy code branches that contain defect rectification in the test
environment to check whether the problems are completely rectified. If the
problems are not fixed or new problems are introduced during the fixing,
record the problems in defect tickets and send them back to the developers
for further analysis and fixing.

9. Close the defect tickets.
The defect tickets can be closed only after the regression test verifies that the
problems are resolved and no new problem is generated. Generally, a defect
ticket can be closed only in three cases: normal closure of a problem, closure
of a non-problem, and closure of a repeated problem. Some descriptions and
pictures can be added to the defect tickets to record the version in which the
problems have been resolved.

Customizing a Defect Handling Process in CodeArts TestPlan

Step 1 Determine the defect status, for example, New, Developing, Resolved, Testing,
Rejected, and Closed. These statuses have been preset in the CodeArts TestPlan
bug template. You can also add new statuses.

CodeArts TestPlan
Best Practices 7 Defect Handling Process and Precautions

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 38

Step 2 Set the transition direction of the defect status.

Step 3 Set defect fields and templates to instruct test and developers to fill in
information.

CodeArts TestPlan
Best Practices 7 Defect Handling Process and Precautions

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 39

----End

CodeArts TestPlan
Best Practices 7 Defect Handling Process and Precautions

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 40

8 Writing a Test Report

A test report summarizes the test process and result, that is, the completion of the
test plan, analyzes findings, and provides the product quality basis for related
personnel to make decisions on acceptance and delivery. Generally, a test report
includes the test overview; test scope and function list; test policy and method
description; test metric statistics and analysis; test risk analysis and disclosure;
quality evaluation and release suggestions.

Test Overview

A test report briefs the test activity, clarifies target audience, reference test
standards, test background and requirements, summarizes test object analysis, test
requirements, test content, and test process, and draws test conclusions.

The test conclusions must be prepared based on the focuses of the target
audience of the report, that is, the target stakeholders. Product managers should
focus on risk disclosure and product quality conclusions. Test managers should
focus on test costs and test outputs. Developers should focus on defect results and
product quality information.

Test Scope and Function List
● A test report describes the functions, application scenarios, benefits, and

functions of test objects.
● A test report describes the test scope specified in the test plan, including the

name, version, features, requirements, environment, and test items of the
tested system (test objects).

Test Strategy and Method Description
● A test report reviews the test policy and solution, such as the test types,

scenarios, and methods. It strategically describes how to perform the test. It
also introduces the solution used in the test, such as the integration procedure
and sequence, test procedure and sequence, test method, test tool, and test
case design and execution method.

● A test report describes the test environment, such as the name, specifications,
quantity, version, and account of the hardware, software, and test tools used
in the test.

CodeArts TestPlan
Best Practices 8 Writing a Test Report

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 41

● A test report summarizes the test period and tester input, that is, the planned
start time and end time of the test, overall test progress, key progress check
points, number of testers, work division, and labor hours.

Test Metric Statistics and Analysis
● Statistics on key test metrics: quantifiable metrics of the tested system quality,

such as the speed, throughput, temperature, time, and resource usage.
● Defect statistics and analysis: total number of defects, defects by severity,

defect resolution rate, defect repeat rate, number of pending defect tickets,
defect distribution by module, and defect source distribution. Techniques such
as defect orthogonal analysis and four-quadrant defect analysis can be used.

● Test execution statistics: number and proportion of designed test cases,
number of executed test cases, pass rate of test case execution, number of
regression tests, manpower input for test execution, and test execution period.

● Statistics on test adequacy and test capability: coverage of requirements and
functional features, test execution completion rate, code test coverage rate,
test automation rate, and defect hit rate of test cases.

Test Risk Analysis and Disclosure
Based on the test process and result, a report analyzes whether the product has
quality risks, and lists the risks, risk basis, risk level, and risk mitigation
suggestions. Risks do not mean that the quality does not meet requirements. The
risk handling strategy depends on the risk occurrence probability and the
estimated loss after the occurrence. If the product of the two is very low, the risk
can be accepted.

Risks are an important basis for major stakeholders to determine the overall
product quality and whether the release conditions are met. Risks must be filled in
logically.

Quality Evaluation and Release Suggestions
A test report provides objective quality ratings and evaluations based on company
or industry standards, as well as quality results and risk analysis for reference.

It provides release suggestions such as "Release", "Delay", or "Partial release"
based on the quality evaluation. The release suggestions can be specific to
features. Features with high risks are not recommended for release or can be
released with restrictions.

CodeArts TestPlan
Best Practices 8 Writing a Test Report

Issue 02 (2024-10-18) Copyright © Huawei Technologies Co., Ltd. 42

	Contents
	1 E-Commerce Platform Test Driven by API Automation Test Cases and Keywords
	2 Designing a Test Based on Requirements
	3 DevOps Agile Test
	4 Tailoring a Test Plan
	5 Typical Test Design Techniques
	6 Testing Pyramid and Continuous Automated Testing
	7 Defect Handling Process and Precautions
	8 Writing a Test Report

